Manuel d'utilisation R60736.0003

SK.1S-1A2RSConvertisseur de signaux SSI - analogique / série

Caractéristiques:

- Convient pour le raccordement de transmetteurs et de codeurs utilisant une interface SSI
- Interfaces série RS232 et RS485 pour lecture sérielle des informations du codeur
- Sortie analogique scalable, configurable en tension ou courant
- Options de programmation des courbes caractéristiques de linéarisation
- Fonctions supplémentaires telles que la suppression de bits, la fonction de déroulement cyclique, etc.
- Modulation simple via la fonction APPRENTISSAGE ou avec PC
- Sortie auxiliaire 5 VDC pour alimentation de transmetteur
- Alimentation 18 ... 30 VDC

Version:	Description:
Index 1	2018-01

Notices légales:

Tous les contenus de ce mode d'emploi sont sous réserve des conditions d'utilisation et droits d'auteur de Kübler Group, Fritz Kübler GmbH. Toute reproduction, modification, réutilisation ou publication dans d'autres médias électroniques et imprimés et de leur publication (également sur Internet) nécessite l'autorisation préalable écrite de Kübler Group, Fritz Kübler GmbH.

 $\mathsf{R60736.0003} - \mathsf{Index}\,\mathbf{1}$

Table des matières

1.	Sécurité et responsabilité	4
	 1.1. Instructions générales de sécurité	4 5
2.	Généralités	6
3.	Brochage et connexions	7
	 3.1. Connexion du codeur en mode maître	8 8
4.	Configuration du commutateur DIP	10
5.	Mise en service	11
	5.1. Autotest	. 11 . 11
6.	Lecture de la position du codeur par l'intermédiaire de l'interface série	13
7.	Mise en service avec le PC et le logiciel d'application OS6.0	14
8.	Paramètres de l'appareil	15
	 8.1. Paramètres d'affichage :	. 15 . 18 . 21 . 21
	8.7. Paramètres pour RS232 / RS485	
9.	Linéarisation programmable	25
10.	Caractéristiques techniques	27
11.	Dimensions	28
12 .	Liste des paramètres, paramètres par défaut	29

1. Sécurité et responsabilité

1.1. Instructions générales de sécurité

Cette description est un élément déterminant qui contient d'importantes instructions se rapportant à l'installation, la fonctionnalité et l'utilisation de l'appareil. La non-observation de ces instructions peut conduire à la destruction ou porter atteinte à la sécurité des personnes et des installations!

Avant mise en service de l'appareil, veuillez lire avec soin cette description et prenez connaissance de tous les conseils de sécurité et de prévention! Prenez en compte cette description pour toute utilisation ultérieure.

L'exigence quant à l'utilisation de cette description est une qualification du personnel correspondante. L'appareil ne doit être installé, entretenu, raccordé et mis en route que par une équipe d'électriciens qualifiés.

Exclusion de responsabilité: Le constructeur ne porte pas la responsabilité d'éventuels dommages subis par les personnes ou les matériels causés par des installations, des mises en service non conformes comme également de mauvaises interprétations humaines ou d'erreurs qui figureraient dans les descriptions des appareils.

De ce fait, le constructeur se réserve le droit d'effectuer des modifications techniques sur l'appareil ou dans la description à n'importe quel moment et sans avertissement préalable. Ne sont donc pas à exclure des possibles dérives entre l'appareil et la description. La sécurité de l'installation comme aussi celle du système général, dans lequel le ou les appareils sont intégrés, reste sous la responsabilité du constructeur de l'installation et du système général.

Lors de l'installation comme également pendant les opérations de maintenance doivent être observées les clauses générales des standards et normalisations relatifs aux pays et secteurs d'application concernés.

Si l'appareil est intégré dans un process lors duquel un éventuel disfonctionnement ou une mauvaise utilisation a comme conséquences la destruction de l'installation ou la blessure d'une personne alors les mesures de préventions utiles afin d'éviter ce genre de conséquences de ce type doivent être prises.

1.2. Champ d'utilisation

Cet appareil est uniquement utilisable sur les machines et installations industrielles. De par ce fait, toute utilisation autre ne correspond pas aux prescriptions et conduit irrémédiablement à la responsabilité de l'utilisateur.

Le constructeur ne porte pas la responsabilité de dommages causés par des utilisations non conformes. L'appareil doit uniquement être installé, monté et mis en service dans de bonnes conditions techniques et selon les informations techniques correspondantes (voir chapitre 11).

L'appareil n'est pas adapté à une utilisation en atmosphère explosive comme également dans tous secteurs d'application exclus de la DIN EN 61010-1.

R60736.0003 - Index 1 Page 4 / 30

1.3. Installation

L'appareil doit uniquement être utilisé dans une ambiance qui répond aux plages de température acceptées. Assurez une ventilation suffisante et évitez la mise en contact directe de l'appareil avec des fluides ou des gaz agressifs ou chauds.

L'appareil doit être éloigné de toutes sources de tension avant installation ou opération de maintenance. Il doit également être assuré qu'il ne subsiste plus aucun danger de mise en contact avec des sources de tensions séparées

Les appareils étants alimentés en tension alternative doivent uniquement être raccordés au réseau basse tension au travers d'un disjoncteur et d'un interrupteur. Cet interrupteur doit être placé à côté de l'appareil et doit comporter une indication ,installation de disjonction'.

Les liaisons basses tension entrantes et sortantes doivent être séparées des liaisons porteuses de courant et dangereuses par une double isolation ou une isolation renforcée (boucle SELV).

Le choix des liaisons et de leur isolation doit être effectué afin qu'elles répondent aux plages de température et de tension prévues. De plus, doivent être respectés de par leur forme, leur montage et leur qualité les standards produits et aussi relatifs aux pays concernant les liaisons électriques. Les données concernant les sections acceptables pour les borniers à visser sont décrites dans les données techniques (voir chapitre 11).

Avant mise en service, il doit être vérifié si les liaisons voir les connexions sont solidement ancrées dans les borniers à visser. Tous les borniers (même les non-utilisés) à visser doivent être vissés vers la droite jusqu'à butée et assurer leur fixation sure, afin d'éviter toute déconnexion lors de chocs ou de vibrations. Il faut limiter les surtensions sur les bornes de raccordement aux valeurs de la catégorie surtension de niveau II.

Sont valables les standards généraux pour le cablage des armoires et des machines industrielles comme également les recommandations spécifiques de blindage du constructeur concernant les conditions de montage, de cablage, et d'environnement comme également les blindages des liaisons périphériques.

Vous les trouverez sous <u>www.kuebler.com/download.html</u> « prescriptions CEM pour le cablage, le blindage et la mise à la terre »

1.4. Nettoyage, entretien et recommandations de maintenance

Pour le nettoyage de la plaque frontale utiliser exclusivement un chiffon doux, leger et légèrment humidifié. Pour la partie arrière de l'appareil aucune opération de nettoyage n'est prévue voir nécessaire. Un nettoyage non prévisionnel reste sous la responsabilité du personnel de maintenance voir également du monteur concerné.

En utilisation normale aucune mesure de maintenance est nécessaire à l'appareil. Lors de problèmes inattendus, d'erreurs ou de pannes fonctionnelles l'appareil doit être retourné au fabricant ou il doit être vérifié et éventuellement réparé. Une ouverture non autorisée ou une remise en état peut conduire à la remise en cause ou à la non application des mesures de protection soutenues par l'appareil.

R60736.0003 - Index 1 Page 5 / 30

2. Généralités

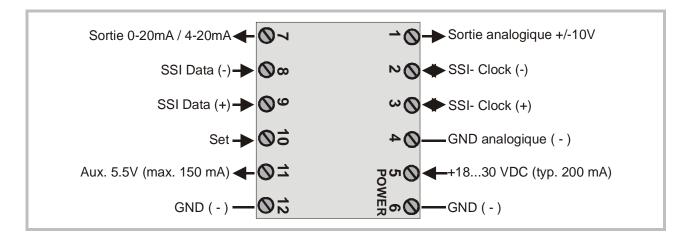
Le convertisseur SK.1S-1A2RS est un appareil compact hautement performant et d'excellent rapport qualité-prix. Il est conçu pour les applications industrielles nécessitant la conversion d'informations d'un transmetteur ou d'un codeur avec une interface SSI en signal analogique ou flux de données de série RS232/RS485 devrait.

L'appareil est équipé de 12 bornes à vis ainsi que d'un connecteur SUB-D 9 contacts (femelle). Il est logé dans un boîtier compact conçu pour un montage sur rail DIN standard.

• Codeurs et transmetteurs compatibles :

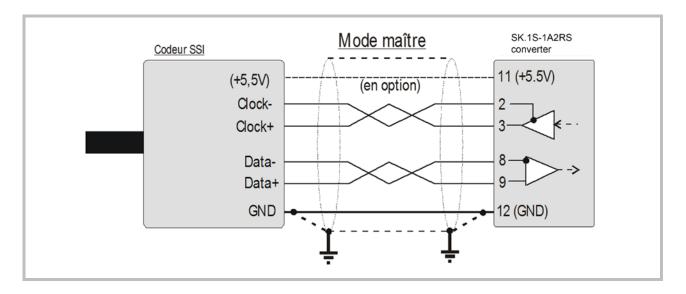
Les codeurs absolus monotour ou multitours et tous les transmetteurs similaires utilisant une interface SSI standard (résolution de 6 à 25 bits en code binaire ou Gray). L'appareil peut fonctionner en mode maître (SK.1S-1A2RS émet le signal d'horloge) ou esclave (SK.1S-1A2RS se commute sur un signal d'horloge existant).

• Remarque sur la résolution du codeur :


L'appareil fournit des paramètres pour les résolutions standard de 13, 21 et 25 bits. En général, pour les transmetteurs ayant d'autres résolutions, vous pouvez utiliser le paramètre suivant plus élevé (vous pouvez donc régler l'appareil à 21 bits avec un transmetteur de 16 bits).

En fonction de la marque et des caractéristiques techniques du codeur, il peut être nécessaire dans certains cas d'effacer les bits excédants en utilisant la fonction d'effacement des bits décrite plus loin. En général, cependant, l'appareil devrait fonctionner parfaitement, même sans effacement de bit spécial.

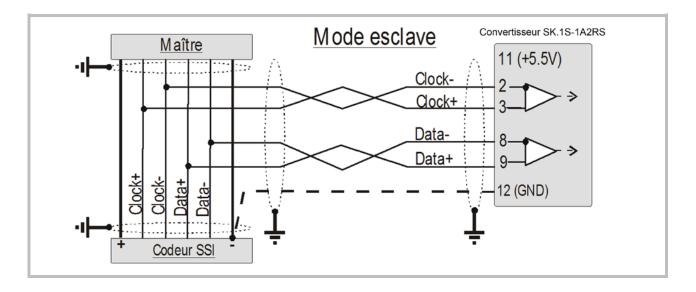
R60736.0003 - Index 1 Page 6 / 30


3. Brochage et connexions

Le diagramme suivant montre l'affectation des broches/des bornes à vis. Nous vous recommandons de relier à la terre le pôle négatif de l'alimentation de l'appareil. Les bornes GND 4, 6 et 12 présentent une interconnexion interne. L'appareil nécessite environ 200 mA en fonction de la tension d'alimentation et de la charge de la sortie de tension auxiliaire.

3.1. Connexion du codeur en mode maître

Nous vous recommandons de relier l'écran du câble du codeur des deux côtés à la borne négative de l'alimentation du codeur.

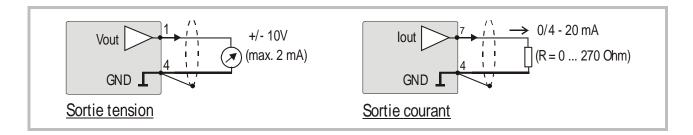


R60736.0003 - Index 1 Page 7 / 30

3.2. Connexion du codeur en mode esclave

Dans ce mode, le convertisseur SK.1S-1A2RS fonctionne en parallèle avec un autre appareil et se commute comme un « système d'écoute » sur le transfert de données existant.

En fonction des besoins, il est possible de relier le potentiel de référence du maître à la borne 12 (GND) du convertisseur ou d'utiliser un mode de fonctionnement différentiel sans potentiel de référence.

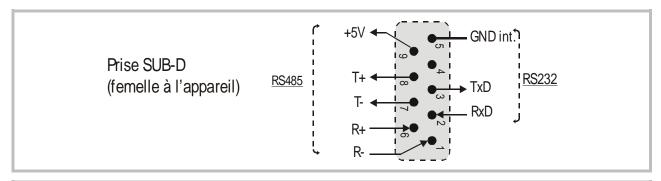


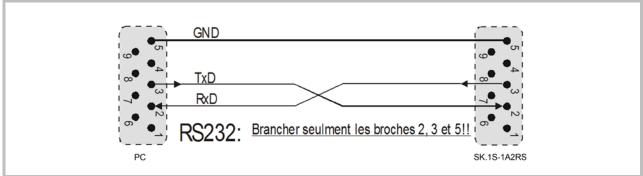
3.3. Sorties analogiques

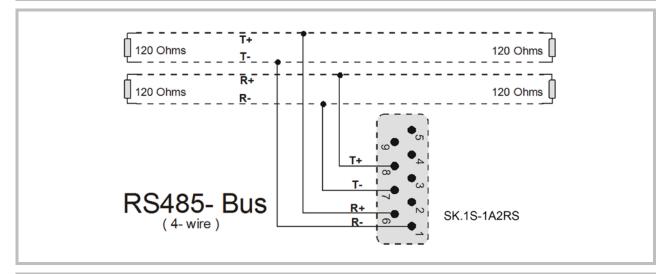
L'appareil est équipé d'une sortie de tension de +/- 10 V ainsi que d'une sortie de courant de 0-20 mA ou 4-20 mA. La résolution est de 14 bits, c'est-à-dire que la sortie de tension fonctionne par pas de 1,25 mV.

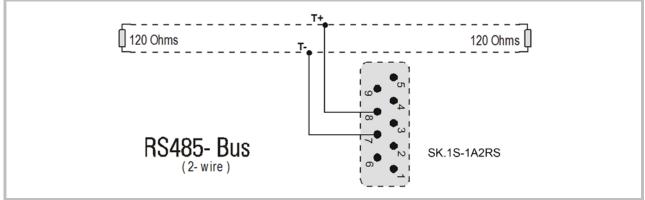
La sortie de courant présente une charge nominale de 2 mA. La sortie de tension permet une charge de 0 à 270 ohms.

La masse analogique séparée présente une liaison galvanique interne avec la borne négative de l'alimentation de l'appareil.

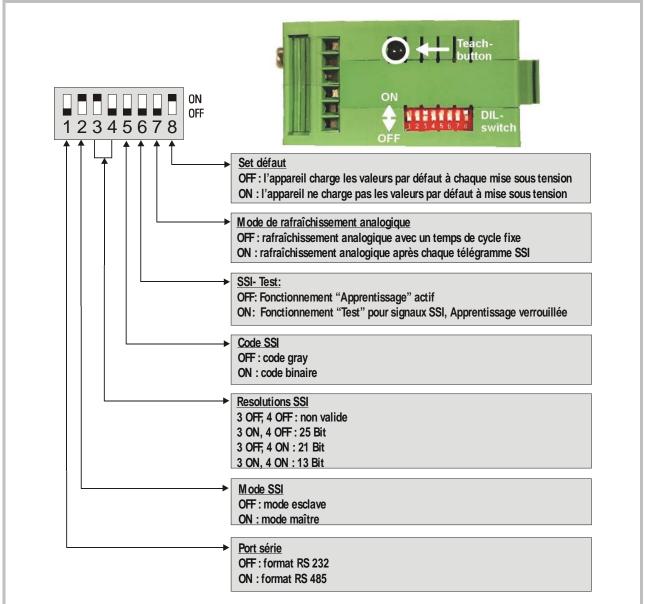



S'il vous plaît ne jamais utiliser mA et Volt ensemble!


R60736.0003 - Index 1 Page 8 / 30


3.4. Interfaces série

L'appareil est équipé de deux interfaces, RS232 et RS485, qui ne peuvent cependant pas être utilisées en même temps. Les interfaces permettent la lecture série de la position du codeur ainsi que la configuration et l'utilisation de l'appareil depuis un PC.



R60736.0003 - Index 1 Page 9 / 30

4. Configuration du commutateur DIP

Sur la partie supérieure de l'appareil se trouve un connecteur DIP 8 contacts permettant de configurer les paramètres de l'appareil spécifiques au fonctionnement.

La configuration du commutateur ci-dessus correspond au mode maître d'un codeur SSI 25 bits avec sortie en code Gray. La sortie analogique fonctionne avec des périodicités de mises à jour identiques et l'interface série est configurée au format RS232.

- les modifications de la configuration du connecteur sont prises en compte uniquement après une nouvelle mise sous tension!
- Lorsque la mise en service est terminée, il est impératif de régler le contact
 6 du commutateur DIP sur ON. Si ce n'est pas le cas, la mise à l'échelle initiale sera écrasée si la touche « Teach » est enfoncée accidentellement.

R60736.0003 - Index 1 Page 10 / 30

5. Mise en service

Pour des applications de base, vous pouvez configurer le convertisseur sans PC en utilisant la fonction d'apprentissage, puis le mettre en service. La programmation de fonctions étendues au moyen d'un PC est décrite plus loin.

5.1. Autotest

Configurez le commutateur DIP en fonction de votre application et raccordez l'appareil. Réglez d'abord le contact 6 du commutateur DIP sur ON (mode de test). Mettez l'appareil sous tension. La DEL verte (tension de service) et la DEL jaune (état) brillent toutes les deux. Après l'autotest réussi, la DEL jaune s'éteint (environ 1s).

5.2. Test de signal SSI

Appuyez une fois sur la touche « Teach ». La ligne de transmission des données SSI est testée. Si la DEL jaune brille, l'état est correct. Si la DEL ne brille pas, les lignes Data+ (9) et Data-(8) doivent être remplacées.

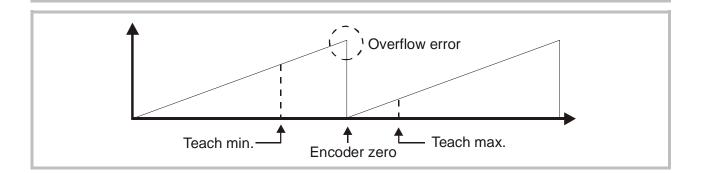
Lorsque vous appuyez pour la seconde fois sur la touche « Teach », la ligne d'horloge SSI est testée de la même manière. Si la DEL brille, l'état est correct, si ce n'est pas le cas, les lignes Clock+ (3) et Clock- (2) doivent être remplacées. *)

Lorsque vous appuyez pour la troisième fois sur la touche « Teach », la DEL s'éteint à nouveau et le test d'état est terminé.

Si la DEL d'état brille lorsque vous appuyez pour la première et la seconde fois sur la touche, l'état SSI est correct. Mettez l'appareil hors tension et réglez le contact 6 du commutateur DIP sur OFF (fonctionnement apprentissage).

En utilisant le PC et le logiciel d'application, vous pouvez vérifier l'état aussi par les petites fenêtres marquées « Status SSI Clock » et « Status SSI Data ». Couleur rouge = états sont corrects.

*) Il est surtout utile de tester les lignes d'horloge en mode esclave. Bien que le test fonctionne également en mode maître, le résultat dit uniquement que la génération interne de l'horloge fonctionne correctement. Cependant, en mode maître, ce test ne peut pas indiquer les signaux d'horloge défectueux ou un mauvais câblage des lignes d'horloge.


5.3. Mise à l'échelle de la sortie analogique au moyen de la fonction d'apprentissage

Remettez l'appareil sous tension (contact 6 sur OFF) et appuyez <u>une fois</u> sur la touche « Teach ». La DEL jaune clignote lentement et l'appareil attend que la <u>position initiale</u> soit enregistrée. Amenez votre codeur sur la position initiale souhaitée et appuyez encore une fois sur la touche. La valeur initiale est enregistrée. La DEL clignote rapidement et l'appareil attend que la position finale soit enregistrée. Amenez votre codeur sur la <u>position finale</u> souhaitée et appuyez encore une fois sur la touche. La position finale est enregistrée et la DEL s'éteint. La sortie analogique est à présent réglée sur la plage définie par le paramètre Output Mode.

R60736.0003 - Index 1 Page 11 / 30

- La position finale sélectionnée peut être supérieure ou inférieure à la position initiale.
- D'autres applications mises à l'échelle telles que les fonctions de linéarisation sont possibles au moyen d'un PC.
- « Teach min » se réfère toujours à la valeur de la sortie initiale définie par le Mode Output, par exemple 0 V ou 0 mA ou 4 mA.
- Si, après l'enregistrement de la position finale, la DEL jaune ne s'éteint pas, une erreur de dépassement s'est produite, c'est-à-dire que le point zéro mécanique du codeur se trouve entre la position initiale et la position finale.
 Dans ce cas, il est nécessaire de modifier la position mécanique du codeur (mécaniquement ou en faisant correspondre la programmation du codeur).
 Avec un PC, le convertisseur lui-même permet également une suppression électronique du saut de dépassement.
- Une erreur de dépassement peut être supprimée uniquement en mettant l'appareil sous tension.
- Il se peut que ce test de dépassement de la DEL échoue dans le cas de codeurs dont la résolution est inférieure à 13 bits.

5.4. Entrée Set :

Avec un signal « haut » sur l'entrée SET (broche 10), l'appareil remplace temporairement les données du codeur SSI par un point de consigne tel que défini par le paramètre « SSI Set Value », et la sortie analogique ainsi que la lecture sérielle seront adaptées en conséquence. Cela signifie que, indépendamment de la position mécanique réelle du codeur, l'appareil utilise en interne les données du paramètre au lieu des données du codeur. Il revient à une lecture normale du codeur dès que ce signal est à nouveau sur LOW. Cette fonction peut se révéler très utile à des fins de test et de mise en service.

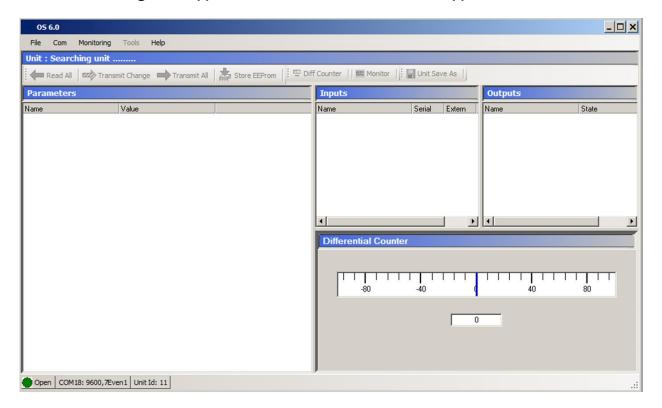
L'entrée Set utilise des caractéristiques PNP-HTL (LOW = ouvert ou 0, HIGH = 10 -30 V).

R60736.0003 - Index 1 Page 12 / 30

6. Lecture de la position du codeur par l'intermédiaire de l'interface série

Vous pouvez lire la position SSI du codeur à tout moment à partir d'une interface série. Cependant, pour la configuration des paramètres série (débit en bauds, etc.), un PC est nécessaire.

Le protocole DRIVECOM est utilisé pour la communication conformément à la norme ISO 1745. Pour de plus amples informations, veuillez vous référer à notre documentation séparée Serpro1a.doc que vous pouvez télécharger à tout moment à partir de notre page Internet www.kuebler.com.


Le code de la valeur réelle de la position du codeur est « <u>:8</u> ». (caractères ASCII pour les deux-points et 8)

R60736.0003 - Index 1 Page 13 / 30

7. Mise en service avec le PC et le logiciel d'application OS6.0

L'utilisation d'un PC pour la mise en service permet d'exploiter toutes les possibilités techniques de l'appareil. Notre logiciel d'application OS6.0 et la documentation détaillée correspondante peuvent être téléchargés gratuitement de notre page Internet www.kuebler.com.

- Branchez votre PC au convertisseur par un câble série RS232, comme décrit à la section
 2.4 du présent manuel. Seules les broches 2, 3 et 5 peuvent être utilisées.
- Démarrez le logiciel d'application OS6.0. La fenêtre suivante apparaît :

 Si les champs de texte et de couleur restent vides et « OFFLINE » apparaît dans l'en-tête, contrôlez votre vérification. Pour effectuer ce contrôle, cliquez sur « Comms » dans la barre de menus. Tous les appareils Kübler présentent la configuration par défaut suivante :

Unité n°11, débit en bauds 9600, 1 démarrage / 7 données / avec parité / 1 bit d'arrêt

 Si les paramètres de série de votre appareil ne sont pas connus, vous pouvez les trouver avec la fonction « SCAN » dans le menu principal « TOOLS ».

R60736.0003 - Index 1 Page 14 / 30

8. Paramètres de l'appareil

8.1. Paramètres d'affichage :

xOperand, /Operand, +/-Operand:

Ces opérandes sont utilisées pour la conversion et la mise à l'échelle des informations fournies par le codeur en d'autres unités plus pratiques pour l'utilisateur (exemple : millimètres). La conversion se base uniquement sur la <u>valeur numérique série relevée</u> et n'influence pas la sortie analogique.

Avec les paramètres: xoperand = 1,0000,

<u>/operand = 1,0000 et</u> +/-operand = 0,0000,

la valeur lue correspond à la valeur effective du codeur.

Affichage =
$$\begin{bmatrix} données du coder x & \frac{xOperand}{\sqrt{Operand}} \end{bmatrix} + \frac{\pm \sqrt{-Operand}}{\sqrt{Operand}}$$

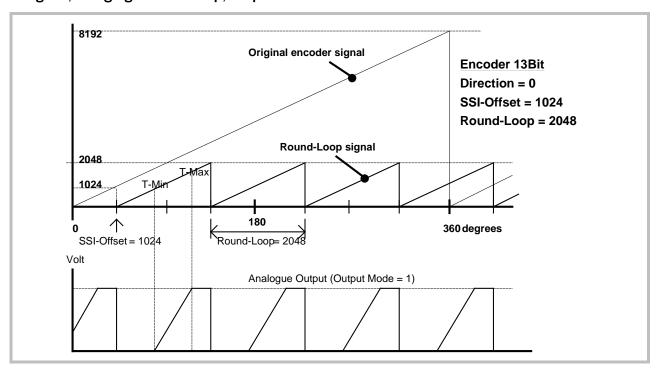
8.2. Paramètres généraux

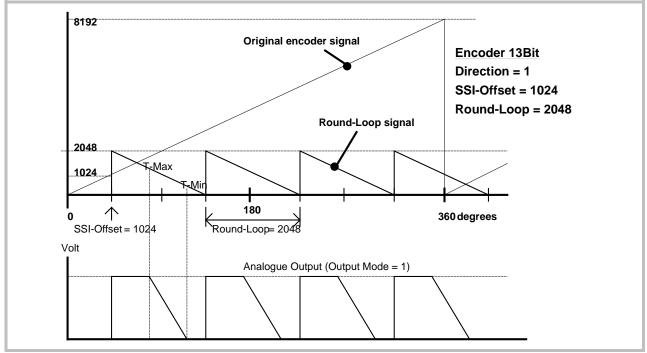
Teach minimum, Teach maximum:

Ces deux paramètres permettent de définir la plage du codeur, où la sortie analogique doit se trouver entre zéro et l'échelle réelle. Vous pouvez sélectionner ces paramètres avec la touche « Teach » de l'appareil ou les touches de fonction de l'écran et les afficher à l'écran en appuyant sur la touche de fonction « Read »*) ; vous pouvez également saisir les valeurs sur le clavier sans utiliser la fonction d'apprentissage.

*) Cliquez une première fois sur Teach-Min (on) et puis une seconde fois (off), ensuite cliquez une première fois sur Teach-Max (on) et puis une seconde fois (off), pour activer vos résultats Teach, cliquez sur « Activate Data », pour visualiser vos résultats Teach à l'écran, appuyez sur la touche « Read ». Toutes les valeurs seront finalement mémorisées dans l'appareil en appuyant sur la touche « Store EEprom ».

Round Loop:

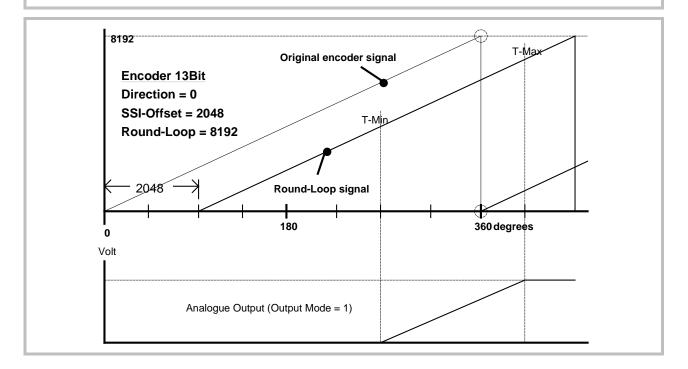

Cette valeur est généralement réglée sur <u>00000</u>. Toute autre valeur entraîne le remplacement de la position réelle du codeur par un cycle répétitif de comptage.


Exemple : avec une valeur égale à 2048, la représentation interne de la position reste dans la plage 0-2047. Si le point zéro est dépassé en mode de décomptage, le comptage de position recommence à 2047. Si la valeur 2047 est dépassée en mode de comptage, le comptage de position recommence à 0.

La position zéro du compteur Round Loop peut être réglée par le paramètre « SSI-Offset » qui permet des réglages entre 0 et la valeur de déroulement cyclique. Le paramètre « Direction » permet de régler le sens du comptage du compteur Round Loop (0: en haut, 1 = en bas). Pour cette nouvelle définition de la position Round Loop, vous êtes libre de régler à nouveau les seuils zéro et de valeur maximale de l'échelle de votre sortie analogique au moyen des touches Teach Min et Teach max.

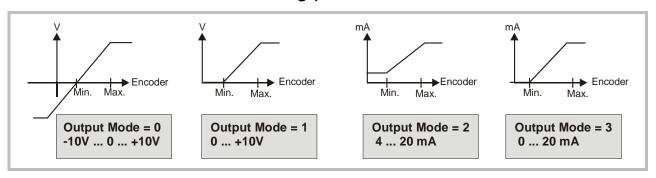
R60736.0003 - Index 1 Page 15 / 30

Les illustrations suivantes expliquent clairement la cohérence entre les données du codeur original, le réglage Round Loop, les paramètres « SSI-Offset » et « Direction ».


La fonction Round Loop convient également pour supprimer le dépassement du codeur, lorsque le point zéro mécanique de votre codeur se trouve entre vos valeurs Teach-Min et Teach-Max et que vous ne souhaitez pas modifier la situation mécanique.

Comme l'indique l'illustration suivante, vous devez régler le paramètre Round Loop sur la résolution totale du codeur et passer ensuite à la transition zéro en réglant le paramètre « SSI-Offset » en conséquence.

R60736.0003 - Index 1 Page 16 / 30



- Il faut saisir de nouvelles valeurs pour les paramètres « Teach-Min, »,
 « Teach-Max. » et « Offset » à chaque changement du réglage de
 « Round Loop » ou de « Direction ».
- Au moyen de la fonction Round Loop, il est également possible de modifier le sens du comptage du codeur en réglant le bit « Direction ».
- Ensuite, il est à nouveau nécessaire de saisir de nouvelles valeurs pour les paramètres « Teach-Min » et « Offset ».

Mode de sortie :

Définit le format de sortie des sorties analogiques comme suit :

Mode de linéarisation :

Définit le type de linéarisation.

0: Linéarisation désactivée, les paramètres P1 à P16 ne sont pas utilisés.

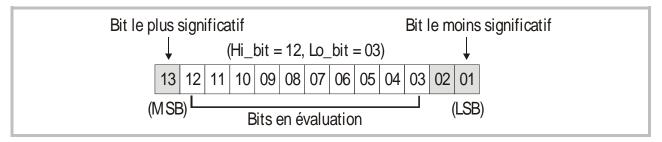
1: Linéarisation dans la plage 0 – 100%

2: Linéarisation dans la plage -100% à +100%

Référez-vous à l'exemple de la section 9 « Linéarisation programmable ».

R60736.0003 - Index 1 Page 17 / 30

8.3. Réglages spécifiques SSI


SSI Low Bit:

Définit le bit le moins significatif (LSB) pour l'évaluation lors de l'utilisation de la fonction d'effacement de bit. Doit être réglé sur « 01 » pour l'évaluation complète de la série du codeur.

SSI High Bit:

Définit le bit le plus significatif (LSB) pour l'évaluation lors de l'utilisation de la fonction d'effacement de bit. Doit être réglé sur le nombre total de bits du codeur pour l'évaluation complète de la série du codeur.

L'exemple ci-dessous utilise un codeur de 13 bits lorsque le High Bit est réglé sur 12 et le Low Bit est réglé sur 03, ce qui entraîne une évaluation uniquement des bits 03 à 12 et l'effacement des positions 01, 02 et 13.

Astuce pour l'utilisation de la fonction d'effacement de bit :

L'effacement de bit résulte en une évaluation différente des informations du codeur. Vous devez toujours connaître parfaitement la résolution et le nombre de tours enregistrés lorsque vous utilisez cette fonction.

L'exemple suivant utilise un codeur monotour de 13 bits afin d'expliquer les résultats divers de l'effacement de bit.

Sans effacement, un codeur de 13 bits fournirait des informations 0 – 8191 avec un tour de 0 – 360° de l'axe du codeur. Cela suppose de régler « High Bit = 13 » et « Low Bit = 01 ».

<u>I est facile de comprendre qu'il existe deux manières différentes d'utiliser seulement 12 des 13 bits disponibles.</u>

- Lorsque nous réglons High Bit sur 12, lorsque Low Bit reste sur 01, nous avons effacé le bit le plus significatif. Le résultat correspond à un codeur fournissant des informations 0 4095 alors que nous tournons à partir de 0 180°, et à nouveau les mêmes informations 0 4095 alors que nous tournons de 180° à 360°. La résolution reste inchangée en respectant le nombre de pas par révolution.
- Nous pouvons également laisser High Bit sur 13 et, à la place, régler Low Bit sur 02. Cela signifie que nous effaçons maintenant le bit le moins significatif. Résultat: dans un tour de 0 360°, nous recevons des informations du codeur 0- 4095 une seule fois, mais le nombre total de pas par révolution a diminué de moitié.

R60736.0003 - Index 1 Page 18 / 30

SSI Baud Rate (débit en bauds SSI) :

Définit la vitesse de transmission des codeurs SSI. Plage de réglage : 100 Hz à 1 MHz.

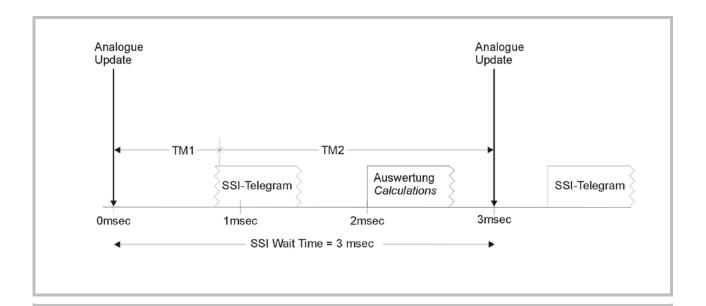
Vous êtes libre de régler toute fréquence souhaitée entre 0,1 kHz et 1000,0 kHz. Cependant, pour des raisons techniques, dans la gamme supérieure de fréquence en mode maître, l'appareil produira uniquement l'une des fréquences suivantes avec exactitude :

1 000,0 kHz	888,0 kHz	800,0 kHz	727,0 kHz	666,0 kHz
615,0 kHz	571,0 kHz	533,0 kHz	500,0 kHz	470,0 kHz
444,0 kHz	421,0 kHz	400,0 kHz	380,0 kHz	363,0 kHz
347,0 kHz	333,0 kHz	320,0 kHz	307,0 kHz	296,0 kHz
285,0 kHz	275,0 kHz	266,0 kHz	258,0 kHz	250,0 kHz

Dès lors, en mode maître, d'autres réglages entraîneront la production de la valeur suivante ou précédente selon la liste ci-dessus. Lorsque tous les réglages sont < 250,0 kHz, l'erreur entre le taux défini et le taux produit devient insignifiante.

Il est obligatoire de définir le taux Baud également en mode esclave. Dans ce cas, cependant, le réglage ne sert qu'à déterminer le temps de pause pour une synchronisation correcte (la pause est détectée après 4 cycles d'horloge). L'appareil se synchronise automatiquement avec chaque signal d'horloge éloigné dans la gamme de taux en bauds spécifiée.

SSI Wait Time (temps d'attente SSI) :


Ce paramètre définit le temps d'attente entre deux télégrammes SSI dans une gamme de 0,001 à 99,999 secondes. En mode normal, le temps réel peut varier de $512~\mu s$ à cause des temps de cycle du processeur.

En mode esclave, la distance des protocoles SSI dépend du maître éloigné et le temps d'attente SSI spécifie la distance des suites de données d'évaluation. Un réglage sur 100 ms résulte en l'évaluation d'un seul télégramme toutes les 100 ms, même si le maître a transmis bien plus de télégrammes.

En particulier avec des applications de boucles de commande fermées, il peut être avantageux de disposer de mises à jour identiques à la sortie analogique (commutateur DIP 7 = OFF). Ce n'est possible qu'en mode maître uniquement et réglage du temps d'attente (doit être >0) correspond immédiatement au calendrier des mises à jour.

L'illustration suivante explique les séquences en utilisant le mode de mise à jour identique avec un réglage du temps d'attente SSI sur 3 ms.

R60736.0003 - Index 1 Page 19 / 30

- Le temps le plus court possible pour une mise à jour identique est 2 ms, en raison des temps de traitement interne (temps d'attente SSI définit sur 0,002).
- Les marques de temps TM1 et TM2 indiquées sur le diagramme ci-dessus peuvent être affichées à l'aide de la fonction Monitor du logiciel d'application du PC. Il est aisé de comprendre que la somme des deux temps doit être égale au réglage du temps d'attente, sinon vous devez augmenter le taux en bauds ou choisir un cycle de mise à jour plus long. (Le code de la valeur réelle est « :3 » pour TM1 et « :5 » pour TM2.)
- Dans les cas critiques, vous pouvez réduire les temps de traitement internes de l'appareil, en négligeant la conversion des données du codeur série RS232.

Pour ce faire, réglez simplement le paramètre « /Operand » sur 00000.

SSI Offset:

Définit la position zéro électrique du codeur en respectant la position zéro mécanique. Quand la fonction Round Loop n'est pas activée (Round Loop = 0), le SSI Offset est soustrait de la lecture de la position SSI, ce qui peut également provoquer des résultats négatifs. Quand la fonction Round Loop est activée, SSI Offset déplace la position zéro mécanique, mais entraîne uniquement des résultats positifs.

SSI Set Value:

L'application d'un signal Set éloigné à l'entrée Set (broche 10) résulte en une substitution temporaire de la valeur de la position SSI par la valeur SSI Set saisie ici. Cette fonction permet de tester et de simuler facilement les valeurs de sortie analogiques déterminées pendant la mise en service.

R60736.0003 - Index 1 Page 20 / 30

8.4. SSI Error Settings:

SSI Error Bit:

Définit la position du bit d'erreur (si disponible avec le codeur utilisé). Les erreurs indiquées par le codeur peuvent être lues via le code de la valeur réelle ;9 (point-virgule neuf, indication de l'erreur = 2000hex). Sur l'écran de votre PC, la boîte « Error Bit active » apparaît en rouge et la DEL de devant clignotera à un rythme 1 :4 On/Off en cas d'erreur.

00: pas de bit d'erreur disponible

13: le bit 13 est le bit d'erreur

25: le bit 25 est le bit d'erreur, etc.

SSI Error Bit Polarity:

Définit la polarité du bit d'erreur.

le bit est peu significatif en cas d'erreurle bit est très significatif en cas d'erreur

8.5. Réglage de linéarisation en % :

P01 (x), P01 (y,) etc.:

Les paramètres de linéarisation tel que montré sous 9.

8.6. Setup Settings:

Analogue Offset:

Ce paramètre peut ajuster la sortie zéro analogique dans une gamme d'environ 100 mV (soit environ 200 µA) si nécessaire.

Analogue Gain:

Règle le palier amplificateur/excursion de sortie maximale de la sortie analogique. Réglage de 1000 résultats dans une excursion de sortie/palier amplificateur de 10 volts, soit 20 mA.

Direction:

Ce paramètre modifie le sens interne du comptage (0 ou 1), à condition que l'appareil fonctionne en mode Round Loop. Toute modification des paramètres Round Loop ou Direction requiert une nouvelle procédure Teach.

R60736.0003 - Index 1 Page 21 / 30

8.7. Paramètres pour RS232 / RS485

Paramètre	Description									
Numéro de	-	les applications RS	S485, il	est n	éces	sai	re d	e lie	rune	
l'appareil :	adresse spécifique	e à chaque appareil	l, vu que	jusq	u'à 3	32 a	ppa	areils	peuv	vent
	être connectés au	être connectés au même bus.								
	Vous pouvez choisir n'importe quel numéro d'adresse entre 11 et 99.									
	Réglage en usine = 11.									
	Les adresses comportant un <u>«O» ne sont pas autorisées</u> , car celles-ci sont utilisées comme adresses collectives.									
Serial Baud	Configuration Baud									
Rate:	0		9600							
			4800							
						100				\dashv
	3					200				_
						00				
	5					200)			_
						400			\dashv	
		* = Réglage	e en usine							
Carial Farmant										
Serial Format :	Configuration	Configuration Bits de données Parité					Bits de stop)
	0*	7	E	ven			1			
	1	7	even				2			
	2	7	odd			1				
	3 7			odd				2		
	4						1			
	5	7	none even odd				2			
	6	8					1			
	7	8					1			
	8	8		one			1			
	9	8 * Dárda		one				2	•	
		* = Regiag	ge en usine							
Serial Protocol :	Ce paramètre sert à configurer le protocole pour la transmission cyclique. (XXXXXX représente la valeur de mesure) La longueur de la valeur de mesur transmise est dépendante de sa valeur actuelle.									
	Les deux formats d'impression sont indiqués dans le tableau suivant :								_	
	Serial Protocol = 0*:	,	- X X							
	Serial Protocol = :		- X X	X	X	X	X	LF	CR	
	* = Réglage en usine									

R60736.0003 - Index 1 Page 22 / 30

Serial Timer :	cycliques (Printer Mode *) Plage de réglage 0,001 - 99,99 Pour un réglage de « 0 » l'appa		ntre les transmissions			
	Ce paramètre sert à définir, en secondes, le temps entre les transmissions cycliques (Printer Mode *) Plage de réglage 0,001 - 99,999 sec. Pour un réglage de « 0 » l'appareil travaille uniquement en « mode PC » (l'appareil attend une séquence de demande et envoie une séquence de réponse correspondante).					
Serial Value :	Ce paramètre sert à définir le registre de lecture interne. Le positionnement « Code » = 00 - 09 correspond aux registres « :0 » à « :9 ». Le positionnement « Code » = 10 - 19 correspond aux registres « ;0 » à « ;9 ». Cf. illustration suivante pour plus de détails. Les codes les plus importants sont :					
		ASCII				
	Register Analog Voltage	:1				
	Calculation (Display)	:8				
	SSI Value	:9				
	SSI Value (HW)	;0				
	- SSI Format (13,21,25 bit)	Hardware	Legend			
	- Bin/Gray Code	SSI Value (HW) (Code ";0") Evaluation of the	Comments Hardware			
	- Bit Blanking - SSI Error Bit	SSI-Value (Code ":9")	Parameter Functionality			
	- Calculate Display Value - Round_Loop Calculate Analog Value	Evaluation of the SSI Value Analog Voltage	Display-Value (Code ":8")			
	** = Réglage en usine	(Code ":1") Hardware				

 $\mathsf{R60736.0003} - \mathsf{Index}\,\mathbf{1}$

f) En port sériel, l'appareil peut fonctionner aussi bien en « <u>mode PC</u> » qu'en « <u>mode Printer</u> ».

<u>En mode PC</u>, l'appareil attend une séquence de demandes et envoie une séquence de réponses correspondantes. Pour plus de détails sur le protocole voir la description "SERPRO".

<u>En mode Printer</u>, l'appareil envoie des données cycliques sans qu'on le lui demande.

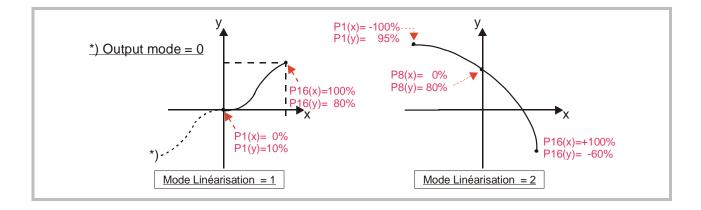
Dès que l'appareil reçoit un signal, il se met automatiquement en mode PC et fonctionne conformément au protocole. Si au bout de 20 secondes, l'appareil n'a pas reçu de signal, il se met automatiquement en mode Printer et démarre la transmission cyclique.

R60736.0003 - Index 1 Page 24 / 30

9. Linéarisation programmable

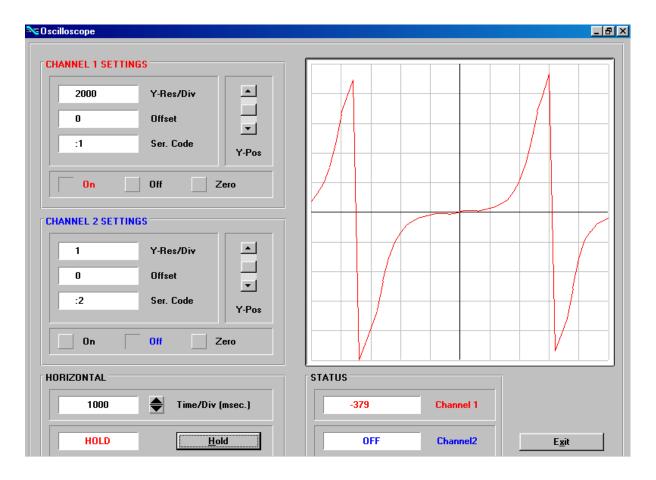
Cette fonction permet de convertir un mouvement linéaire en un signal analogique non linéaire ou vice versa. Il existe 16 points de linéarisation qui peuvent être répartis sur l'ensemble de la plage de conversion à des intervalles au choix. Entre deux coordonnées enregistrées, l'appareil effectue une interpolation avec des sections droites. Il est pour cette raison recommandé de placer de nombreux points aux sections de forte courbure et peu de points aux sections de faible courbure.

Pour spécifier la courbe de linéarisation, le paramètre « Linearisation Mode » doit être réglé sur 1 ou 2.


Les paramètres **P1(x)** à **P16(x)** permettent de spécifier 16 coordonnées x. Il s'agit des valeurs de sorties analogiques que génère l'appareil sans linéarisation en fonction de la position réelle du codeur. <u>La saisie se fait en pourcentage de l'échelle réelle</u>.

Les paramètres **P1(y)** à **P16(y)** vous permettent d'indiquer la valeur que prend la sortie analogique en ce point à la place.

Exemple: la valeur P2(x) est remplacée par la valeur P2(y).

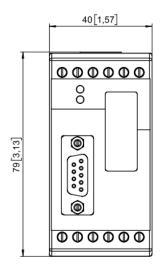

- Les registres x doivent utiliser <u>des valeurs de croissance continue</u>, c'est-àdire que la valeur inférieure doit être mémorisée sur P1(x) et la valeur supérieure P16(x).
- Toutes les données sont au format xx, xxx%, où 0,000% correspond à une sortie analogique de 0 V et 100,000% à l'échelle réelle.
- Si 1 a été choisi pour le <u>mode</u> de linéarisation, <u>P1(x) doit être réglé sur 0%</u> et <u>P16(x)</u> sur 100%. La linéarisation est définie uniquement dans le domaine de valeurs positives ; en cas de valeur négative, la courbe et obtenue par symétrie.
- Si 2 a été choisi pour le <u>mode</u> de linéarisation, <u>P1(x)</u> doit être réglé sur <u>100% et P16(x)</u> sur +100%. Ce mode permet aussi les courbes qui ne sont pas symétriques par rapport au point zéro.

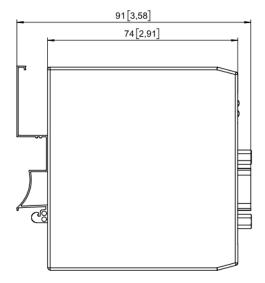
R60736.0003 - Index 1 Page 25 / 30

Vous pouvez visualiser la courbe programmée sur un oscilloscope externe ou sur un PC. Pour cela, sélectionnez la fonction « Analogue Voltage Function » dans le menu de TEST sous TOOLS.

L'appareil simule alors un mouvement de codeur répétitif sur toute la plage et génère le signal analogique correspondant. Si la fonction oscilloscope du logiciel d'application est utilisée, le code série doit être « :1 ».

R60736.0003 - Index 1 Page 26 / 30


10. Caractéristiques techniques


Alimentation :	Voltage d'alimentation :	18 30 VDC				
	Circuit de protection :	protection contre les inversions de polarité				
	Ondulation résiduelle :	< 10 % dans 24 VDC				
	Consommation :	env. 170 mA (non chargé)				
	Type de connexion :	borne à vis, 1,5 mm ²				
Alimentation du codeur :	La tension de sortie :	+ 5,5 VDC				
	Charge :	max. 250 mA				
	Type de connexion :	borne à vis, 1,5 mm ²				
Entrées SSI :	Format :	TTL différentielle, RS422				
	Plage de fréquence :	100 Hz 1 MHz				
	Résolution :	13, 21 ou 25 bits				
	Temps de pause SSI:	min. 4 x clock				
	Type de connexion :	borne à vis, 1,5 mm ²				
Entrée Contrôle :	Logique de entrée :	PNP, active high				
	Niveau de signal :	HTL: LOW: 0 3 V, HIGH: 10 30 V				
	Fonction :	set/preset				
	Durée d'impulsion :	min. 10 ms				
	La résistance interne :	$Ri \approx 5 \text{ kOhm}$				
	Type de connexion :	borne à vis, 1,5 mm ²				
Sortie analogique :	Tension:	-10 +10 V / 0 10 V (max. 2 mA)				
	Courant:	0 20 mA / 4 20 mA (charge : 270 0hm)				
	Résolution :	14 bits (± 13 bits)				
	Précision :	0,1 %				
	Temps de stabilisation :	2 ms				
	Type de connexion :	borne à vis, 1,5 mm²				
Interface série :	Format :	RS232 ou RS485 (commutable)				
	Vitesse de transmission	600, 1200, 2400, 4800, 9600 (standard),				
	(commutable) :	19200, 38400 baud				
	Modes:	PC ou Printer				
	Type de connexion :	femelle SUB-D, 9-pol.				
Boîtier:	Matériel :	plastic				
	Montage :	profilé chapeau, 35 mm (suivant EN 60715)				
	Dimensions (I x h x p):	40 x 79 x 91 mm				
	Type de protection :	IP20				
	Poids:	env. 190 g				
Température ambiante :	Opération :	0 °C +45 °C (sans condensation)				
	Stockage:	-25 °C +70 °C (sans condensation)				
Taux de défaillance :	MTBF (en années) :	65,6 a (marche en continu, 60 °C)				
Conformité et normes :	CEM 2014/30/UE:	EN 61000-6-2, EN 61000-6-3, EN 61000-6-4				
	RoHS 2011/65/UE:	EN 50581				

 $R60736.0003-Index\,1$

11. Dimensions

Cotes en mm [pouces]

 $R60736.0003-Index\,1$

12. Liste des paramètres, paramètres par défaut

Indications	Valeur min.	Valeur max.	Valeur par défaut	Décades	Signes	Code série
X Operand	-10,0000	+10,0000	1,0000	+/-6	4	00
/ Operand	0	10,0000	1,0000	6	4	01
+/- Operand	-99999999	99999999	0	+/-8	0	02
Teach Minimum	-99999999	+9999999 9	0	+/-8	0	03
Teach Maximum	-99999999	+9999999	10000	+/-8	0	04
Round Loop	0	99999999	0	8	0	05
Output Mode	0	3	0	1	0	06
Linearisation Mode	0	2	0	1	0	07
SSI Low Bit	0	25	1	2	0	08
SSI High Bit	1	25	25	2	0	09
SSI Baudrate	100	1000000	100000	7	0	10
SSI Wait Time	0	10,000	0	5	3	11
SSI Offset	0	99999999	0	8	0	12
SSI Reset Value	0	99999999	0	8	0	13
SSI Error Bit	0	25	0	2	0	14
SSI Error Bit Polarity	0	1	0	1	0	15
P1(x)	-100,000	+100,000	100000	+/-6	3	Α0
P1(y)	-100,000	+100,000	100000	+/-6	3	A1
P16(x)	-100,000	+100,000	100000	+/-6	3	D0
P16(y)	-100,000	+100,000	100000	+/-6	3	D1
Direction	0	1	0	1	0	46
Analog Offset	-99	+99	0	+/-2	0	47
Analog Gain	0	10000	1000	5	0	48
Unit Number	0	99	11	2	0	90
Serial Baud Rate	0	6	0	1	0	91
Serial Format	0	9	0	1	0	92
Serial Protocol	0	1	0	1	0	30
Serial Timer	0	99.999	0	5	3	31
Serial Value	0	19	0	2	0	32
Reserve	0	10000	0	5	0	33

 $\mathsf{R60736.0003} - \mathsf{Index}\,\mathbf{1}$

Kübler Group
Fritz Kübler GmbH
Schubertstrasse 47
78054 Villingen-Schwenningen
Allemagne
Tél. +49 7720 3903-0
Fax +49 7720 21564
info@kuebler.com
www.kuebler.com

 $\mathsf{R60736.0003} - \mathsf{Index}\,\mathbf{1}$