

With incremental or absolute encoder with clamping flange ø 58 mm .

Measuring wheel systems from Kübler are the ideal solution for reliable speed measurement, position detection and length measurement in applications with linear movements. These are recorded rotationally via the measuring wheel with attached encoder directly on the surface of the material to be measured and converted into linear data.

The robust MWE61 measuring wheel system offers maximum spring deflection at maximum contact force to compensate for tolerances vertical to the transport movement of the material to be measured.

Features

- Robust design

With flexible mounting options: vertical, horizontal or overhead. Encoder can be mounted on the spring arm in 120° steps.

- Wide range of encoders

Incremental Sendix encoders with a max. resolution of up to 36,000 pulses/revolution as well as absolute encoders for different communication interfaces such as 10 -Link or Profinet for integration in Industry 4.0 concepts.

- Suitable measuring wheels for all measuring surfaces

Circumferences 300 mm or 12 " - measuring wheel coating available with 0 -ring or double 0 -Ring, smooth or corrugated plastic, diamond knurl surface and tufted rubber.

- Contact force up to max. 40 N

With stepless adjustable preload. To compensate for tolerances, the integrated spring ensures a working range of the measuring wheel up to a maximum of 80 mm vertical to the measuring surface.

Construction

(1) Spring arm:	MWE60
(2) Encoder:	Clamping flange ø 58 mm
(3) Measuring wheel:	Circumference 300 mm or 12 "" (Circumference 200 mm or 500 mm on request)

Measuring wheel system

Performance-Line
Measuring wheel system MWE61
With spring arm, contact force max. 40 N

Order code

 with incremental encoder

(1) Measuring wheel, circumference / coating
$31=300 \mathrm{~mm} /$ diamond knurl (aluminum)
$34=300 \mathrm{~mm} /$ plastic smooth (PU)
$36=300 \mathrm{~mm} /$ tufted rubber (PU) $37=300 \mathrm{~mm} / 0$-ring (NBR) $38=300 \mathrm{~mm} /$ double 0-ring (NBR)
$39=300 \mathrm{~mm} /$ plastic corrugated (PU)
$71=12^{\prime \prime}$ / diamond knurl (aluminum)
$74=12^{\prime \prime}$ / plastic smooth (PU)
$76=12^{\prime \prime}$ / tufted rubber (PU)
$77=12^{\prime \prime} / 0-$ Ring (NBR)
$78=12$ " / double 0-ring (NBR)
$79=12^{\prime \prime} /$ plastic corrugated (PU)
(Measuring wheels with circumference 200 mm and 500 mm on request)
(2) Mounted encoder ${ }^{11}$
$50=$ KIS50 incremental
$05=5805$ incremental
to the datasheet $>$
to the datasheet $>$
(other encoders on request)

C Output circuit / supply voltage encoder see data sheet encoder
d Type of connection see data sheet encoder
(c) Pulse rate see data sheet encoder

Order code with absolute encoder
(1) Measuring wheel, circumference / coating
$31=300 \mathrm{~mm} /$ diamond knurl (aluminum)
$34=300 \mathrm{~mm} /$ plastic smooth (PU)
$36=300 \mathrm{~mm} /$ tufted rubber (PU)
$37=300 \mathrm{~mm} / 0-$ ring (NBR)
$38=300 \mathrm{~mm} /$ double 0 -ring (NBR)
$39=300 \mathrm{~mm} /$ plastic corrugated (PU)
71 = 12 " / diamond knurl (aluminum)
$74=12^{\prime \prime}$ / plastic smooth (PU)
$76=12^{\prime \prime} /$ tufted rubber (PU)
$77=12^{\prime \prime} / 0$-Ring (NBR)
$78=12^{\prime \prime} /$ double 0 -ring (NBR)
$79=12^{\text {" } / \text { plastic corrugated (PU) }}$
(Measuring wheels with circumference 200 mm and 500 mm on request)

(other encoders on request)
(C) Output circuit/supply voltage encoder see data sheet encoder
(d) Type of connection see data sheet encoder
(+ +(f) +(9) Interface specifications see data sheet encoder

Calculation of the linear resolution

	Measuring step (distance/pulse)		Resolution (pulses/distance)	
Calculation	$\frac{\text { distance }}{\mathrm{ppr}}=$	Measuring wheel circumference Pulse number encoder	$\frac{\mathrm{ppr}}{\text { distance }}=$	\qquad Measuring wheel circumference
Example 1 Measuring wheel circumference $=300 \mathrm{~mm}$ Pulse number encoder $=3000 \mathrm{ppr}$	$\frac{300 \mathrm{~mm}}{3000 \mathrm{ppr}}=$	0.1 mm / puls	$\frac{3000 \mathrm{ppr}}{300 \mathrm{~mm}}=$	10 pulses / mm
Example 2 Measuring wheel circumference $=12^{\prime \prime}$ Pulse number encoder $=1200$ ppr	$\frac{12 \mathrm{inch}}{1200 \mathrm{ppr}}=$	0.01 inch / puls	$\frac{1200 \mathrm{ppr}}{12 \text { inch }}=$	100 pulses / inch

Measuring wheel system

Option 1	circumference / coating	
31	300 mm / diamond knurl (aluminum)	8.0000.3317.0010
34	300 mm / plastic smooth (PU)	8.0000.3347.0010
36	$300 \mathrm{~mm} /$ tufted rubber (PU)	8.0000.3367.0010
37	$300 \mathrm{~mm} / 0$-ring (NBR70)	8.0000.3377.0010
38	300 mm / double 0-ring (NBR70)	8.0000.3387.0010
39	300 mm / plastic corrugated (PU)	8.0000.3397.0010
71	12" / diamond knurl (aluminum)	8.0000.3717.0010
74	12" / plastic smooth (PU)	8.0000.3747.0010
76	12" / tufted rubber (PU)	8.0000 .3767 .0010
77	12" / O-ring (NBR70)	8.0000 .3777 .0010
78	12"/ double 0-ring (NBR70)	8.0000 .3787 .0010
79	12"/ plastic corrugated (PU)	8.0000.3797.0010
	(Measuring wheels with circumference 200 mm and 500 mm on request)	Details s. datasheet >

Evaluation			Order no.
Preset counter Codix 924	Multifunction device: - Tachometer with limit values		6.924.01XX.XXX
	- Position indicators with limit values		Details s. datasheet >
Accessories			Order no.
O-rings		For measuring wheels with 0 -ring:	
		Measuring wheel circumference $300 \mathrm{~mm},(1)=37$	8.0000.7000.0074
		Measuring wheel circumference 12", (1) 77	8.0000.7000.0075
		For measuring wheels with double 0-ring:	
		Measuring wheel circumference $300 \mathrm{~mm},(1)=38$	8.0000.7000.0077
		Measuring wheel circumference 12", (1) = 78	8.0000.7000.0078

[^0]
Measuring wheel system

Performance-Line
Measuring wheel system MWE61
With spring arm, contact force max. 40 N

Technology in detail

Mounting options encoder on spring arm

The encoder is attached to the spring arm with 3 screws.

For a flexible outlet direction of the cable or connector, the encoder can additionally be mounted in 120° steps.

Various mounting options

Measuring wheel system

Contact force of the measuring wheel on the material to be measured

(1) Preload (example):	20 N by turning the setting wheel by approx. 45° -corresponds to a detent point
(2) Contact force	

(3) Spring deflection limitation to protect against overload

Measuring wheel system

Performance-Line Measuring wheel system MWE61

With spring arm, contact force max. 40 N

Technical data

Mechanical characteristics spring arm MWE60	
Materialsspring spring bracket	spring steel aluminum
Weight	670 g
Contact force, max.	40 N
Operating travel, max.	80 mm
Working temperature range	$-20^{\circ} \mathrm{C} \ldots+70^{\circ} \mathrm{C}\left[-40^{\circ} \mathrm{F} \ldots+176^{\circ} \mathrm{F}\right]$
Shock resistance acc. EN $60068-2-27$	$1000 \mathrm{~m} / \mathrm{s}^{2}, 6 \mathrm{~ms}$
Vibration resistance acc. EN $60068-2-6$	$100 \mathrm{~m} / \mathrm{s}^{2}, 55 \ldots 2000 \mathrm{~Hz}$

Approvals	
UL compliant in accordance with	File no. E224618
CE compliant in accordance with	
EMC Directive	$2014 / 30 /$ EU
RoHS Directive	$2011 / 65 / \mathrm{EU}$

Dimensions

Dimensions in mm [inch]

Spring arm MWE6O in combination with

 meeasuring wheel and encoder KIS50

1 Fixing screw M4 x 6 for measuring wheel
(2) SW5

3 Spring

Measuring wheel circumference	$ø \mathrm{D} \mathrm{mm}[$ inch]
200 mm	$63.7[2.50]$
300 mm	$95.54[3.76]$
500 mm	$159.23[6.26]$
$12^{\prime \prime}$	$97.07[3.82]$

A for measuring wheel with coating:
Diamond knurl (aluminum)

Plastic smooth (PU)

Tufted rubber
(PU)

0 -ring
(NBR)

Double 0-ring (NBR)

Plastic corrugated (PU)

[^0]: Further accessories can be found at: kuebler.com/accessories
 Cables and connectors can be found at: kuebler.com/connection-technology

