

For static applications 1- and 2-axis measurement

IN68

IO-Link

The inclinometers in the IN68 series are used to detect 2-axis inclinations in the measuring range of ±85° or 1-axis inclinations of up to 360° via an acceleration measuring cell. Various parameters can be customized for individual requirements (e.g. via the PACTware software).

Thanks to their high robustness, the inclinometers are also ideally suited for outdoor use.

Features and benefits

• 10-Link interface

For easy integration into Industry 4.0 / IIoT networks.

• Individual setting options via IO-Link Master

- Reset to factory setting
- Center of the measurement as well as start and end point for 1-axis measurement
- Switching the spirit level function on/off
- Settings on the measuring range
- Filtereinstellungen

· Simple start-up and diagnostics

LED display for operating status and FDT/IODD communication as well as for setting the center point position (spirit level function).

· Precise measurement even under harsh environmental conditions

- Temperature range -40 °C ... +85 °C and protection level IP68 / IP69k
- Protection against the influence of salt spray and rapid temperature changes

Order code 1-axis	8.IN68 . 1 7 4 1 . 114
Measuring range7 = 0° 360° (±180°)	
Interface 4 = IO-Link	(g60°) Rusion

Order code 2-axis	8.IN68 2 6 4 1 114
 Measuring range 6 = ± 85° Interface 4 = IO-Link 	X O O O O O O O O O O O O O O O O O O O

For static applications		
1- and 2-axis measurement	IN68	10-Link

Accessories		Order no.
10-Link Master USB	For parameterizing device settings via FDT/IODD communication. USB interface for easy connection to a PC and for power supply. Adapter cable suitable for IN68: 05.00.6061.6462.002M (see below)	8.IO.1K1341.ZZ1UU1
Adapter plate	For using existing mounting holes when replacing with an IS40 inclinometer 22 [0.88] 22 [0.88] 22 [0.88] 34.5 [0.18] 39 [0.35] 44.5 [0.18] 30 [0.79] [2.05] 30 [0.79] [2.05]	8.0010.4066.0000
EMC shield terminal	For an EMC-compliant installation of the cable - top-hat rail mounting - spring steel, galvanized - shield diameter 3.0 12.0 mm	8.0000.4G06.0312
Cables and connectors		Order no.
Preassembled cables	M12 female connector with coupling nut, 4-pin, A coded, straight single ended 2 m [6.56'] PUR cable M12 female connector with coupling nut, 4-pin, A coded, straight M12 male connector with external thread, 4-pin, A coded, straight 2 m [6.56'] PUR cable	05.00.6061.6211.002N 05.00.6061.6462.002N
Connectors	M12 female connector with coupling nut, 4-pin, A coded, straight (plastic)	05.B8141-0

Further Kübler accessories can be found at: kwebler.com/accessories
Further Kübler cables and connectors can be found at: kwebler.com/connection-technology

For static applications 1- and 2-axis measurement

IN68

IO-Link

Technical data

General data 1-axis measurement		
Measuring range	0 360°	
Resolution	0.01°	
Repeat accuracy	≤0.2°	
Temperature drift	$\leq \pm 0.02$ %/K	
Linearity deviation	$\leq \pm 0.2\%$	
Accuracy (at 25°C)	≤ ±0.72°	

General data 2-axis measurement	
Measuring range (max.)	-85 +85°
Resolution	0.01°
Repeat accuracy	≤0.2°
Temperature drift	$\leq \pm 0.02$ %/K
Linearity deviation	$\leq \pm 0.2\%$
Accuracy (at 25°C)	$\leq \pm 0.1^{\circ}$ depending on the measuring range
Accuracy [°] ±0.5 ±0.4	
±0.3 ±0.2 ±0.1	
-85° -60° -45° -30° -15° 0°	+15° +30° +45° +60° +85° Measuring range

Mechanical characteristics			
Electrical connection	M12 connectors, 4-pin		
Weight	89 g [3.14 oz]		
Protection acc. to EN 60529	IP68 / IP69k		
Working temperature range	-40 °C +85 °C [-40 °F +185 °F]		
Material housing	Plastic, polyetherimide		
Vibration resistance (EN 60068-2-6)	20 g; 5 h/axis; 3 axes		
Shock resistance (EN 60068-2-27)	150 g; 4 ms 1/2 sine		
MTTF	548 years		
Dimensions	71.6 x 62.6 x 20 mm [2.82 x 2.46 x 0.79"]		

Electrical characteristics	
Supply voltage	18 30 V DC
Residual ripple	≤ 10 % Uss
Isolation test voltage	≤ 0.5 kV
Wire breakage / Reverse polarity protection	yes
Current consumption	max. 50 mA

Interface characteristics IO-Link		
Communication mode	COM 3 (230.4 kBaud)	
Minimum cycle time	1.3 ms	
Function pin 4	IO-Link	

Approvals	
UL compliant in accordance with	File-Nr. E539414
CE compliant in accordance with	
EMV Directive	2014/30/EU
RoHS Directive	2011/65/EU

3

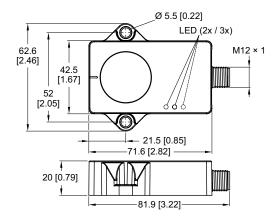
For static applications 1- and 2-axis measurement

IN68

IO-Link

Terminal assignment

Interface	M12 connector, male contacts, 4-pin, A-coded				
	Signal:	+V	n.c.	0 V	IOL
4 IO-Link	Pin:	1	2	3	4


+V : Supply voltage +V DC

Supply voltage ground GND (0 V) IO-Link input 0 V:

IOL:

Dimensions

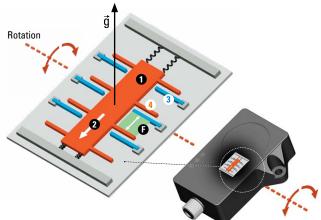
Dimensions in mm [inch]

For static applications 1- and 2-axis measurement

IN68

IO-Link

Technology in detail


Exact angular position via acceleration measurement

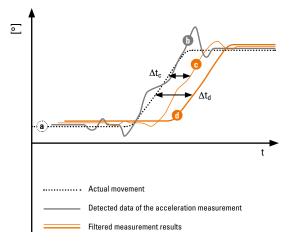
Acceleration measurement

In the acceleration measuring cell, the absolute angular position is determined capacitively in relation to the gravity acceleration $\vec{g}.$

0-position 0-position

The displacement ② of a test mass ① changes the distance and therefore also the capacity ⑥ between fixed ③ and moving ④ electrodes in the measuring cell. This measured capacity is directly related to the inclination of the sensor.

Optimization of the measurement using filter functions


The inertia of the test mass, particularly in the case of fast or rapidly changing rotations and vibrations, can lead to inaccuracies in the detected measurement data ① compared to the actual movement ②. To compensate for these undesirable effects, various filters ③ + ① can be parameterized in the inclinometer.

Restrictions due to filters

However, this leads to a time delay $(\Delta t_c + \Delta t_d)$ for the output of the measurement result (the more precise the desired measurement, the greater the time delay).

Further optimization with dynamic inclinometers

This time delay is not relevant for many static applications (such as solar panels, crane masts, etc.). In dynamic applications (e.g. vehicles in motion), however, this can lead to problems, as a reaction to the movement can only occur with a delay. In this case, it is advisable to use a dynamic inclinometer IN78 with intelligent sensor fusion from Kübler for further optimization of the measurement result.

For static applications 1- and 2-axis measurement

IN68

IO-Link

Technology in detail

Connection

The inclinometer ① is or will be disconnected from the application ③. The IO-Link Master USB ② is connected to the inclinometer with the adapter cable ④ and connected to the PC via the USB interface ⑤. The following parameters can be set using the appropriate software ⑥ (e.g. PACTware):

Setting options

Spirit level function	Can be activated as an assembly aid
Center point	Set current inclination as new measuring range center point
Direction of rotation	Setting the direction of rotation of the axes. Output of the increasing analog values clockwise or counterclockwise.
Configuring process data	The process data is structured in accordance with the IO-Link Smart Sensor Profile. For 1-axis measurement, the angle value is transmitted twice (inverted once). Angle information can be transmitted with a sign (1 bit - sign / 15 bit - angle information) or without a sign (16 bit) with an accuracy of 0.01°.
Filters	Balanced (factory setting) Slow

Easy start-up

Operating status – LED green

Permanent light Appliance ready for operation
Blinking FDT/IODD communication

Spirit level function – LED(s) yellow

Blinking with	
increasing frequency	Approaching the center position
Blinking with	
decreasing frequency	Move away from center position

